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Neural Networks as a Tool To Classify Compounds A ccording to Aromaticity

Criteria

Mercedes Alonso* and Bernardo Herradén*'!

Abstract: Aromaticity is a fundamental
concept in chemistry, with many theo-
retical and practical implications. Al-
though most organic compounds can
be categorized as aromatic, non-aro-
matic, or antiaromatic, it is often diffi-
cult to classify borderline compounds
as well as to quantify this property.
Many aromaticity criteria have been
proposed, although none of them gives
an entirely satisfactory solution. The
inability to fully arrange organic com-
pounds according to a single criterion
arises from the fact that aromaticity is
a  multidimensional = phenomenon.
Neural networks are computational
techniques that allow one to treat a

bidimensional output. We present the
successful applications of Kohonen’s
self-organizing maps to classify organic
compounds according to aromaticity
criteria, showing a good correlation be-
tween the aromaticity of a compound
and its placement in a particular
neuron. Although the input data for
the training of the network were differ-
ent aromaticity criteria (stabilization
energy, diamagnetic  susceptibility,
NICS, NICS(1), and HOMA) for five-
membered heterocycles, the method
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can be extended to other organic com-
pounds. Some useful features of this
method are: 1) it is very fast, requiring
less than one minute of computational
time to place a new compound in the
map; 2) the placement of the different
compounds in the map is conveniently
visualized; 3) the position of a com-
pound in the map depends on its aro-
matic character, thus allowing us to es-
tablish a quantitative scale of aromatic-
ity, based on Euclidean distances be-
tween neurons, 4) it has predictive
power. Overall, the results reported
herein constitute a significant contribu-
tion to the longstanding debate on the
quantitative treatment of aromaticity.

large amount of data, thereby reducing

. . . . Sammon map
the dimensionality of the input set to a

Introduction

The term aromaticity is rooted in structural organic chemis-
try, and it refers to the existence of some properties similar
to those of benzene,! namely electron cyclic delocalization
with energetic stabilization.”) Aromaticity is a concept that
allows organic compounds to be classified in three wide
groups: aromatic, non-aromatic, and antiaromatic. Original-
ly, the aromatic character was used mainly to explain reac-
tivity and (thermodynamic) stability. Afterwards, aromatici-
ty was found to influence a variety of chemical and chemi-
co-physical properties;®* which, in turn, were used to classi-
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fy compounds according to their aromatic character. Al-
though from a qualitative point of view, most organic
compounds®! can be sorted according to their aromaticity,
the quantification of this property as well as the classifica-
tion of borderline compounds is more challenging.

Whereas aromaticity is one of the most frequently used
terms, it is vaguely defined and there is no unequivocal
quantitative scale. Several chemical,*®! energetic,”'¥ mag-
netic,"¥ electronic (delocalization),*?! and structural cri-
teria® 2l have been used with the objective to quantify aro-
maticity, but none of these criteria is universal. This seems
to indicate that aromaticity is a multidimensional phenom-
enon that can not be gauged by a single criterion.*”!

The recent development of supramolecular chemistry,
as well as its consequences in the design of biologically
active® or functional materials,® has stimulated a great
deal of research on noncovalent bonding in organic chemis-
try, including the types of interacting species and their rela-
tive orientations. This research has shown that aromatic
compounds are versatile building blocks for the generation

[28-29]
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of supramolecular structures® and, as a consequence, the
classification and quantification of aromaticity is becoming
essential.*”

In connection with our experimental and computational
studies on different aspects (synthesis,® structure,® and
biological®® properties) of aromatic compounds, we were in-
terested in developing a simple method for classifying aro-
matic compounds; which, in turn, might be the starting
point for a quantitative treatment of aromaticity. We pro-
posed that the multi-dimensional character of aromaticity
might be understood by using neural networks.

The use of artificial neural networks is a technique for
processing data that has been applied recently in chemis-
try® ) and in other fields.["”’ We reasoned that pattern clas-
sifications with neural networks are convenient alternative
methods to achieve the objective to classify organic com-
pounds based on their aromatic character, and that they
would be a useful starting point to quantify this property. To
this end, we have used the self-organizing maps (SOMs) de-
veloped by Kohonen."!! These maps permit “unsupervised
learning”; thus, we do not need to use any output data in
this approach to make a classification of compounds based
on the input data (the values of the different aromaticity cri-
teria).

Herein, we report the successful application of SOMs to
the classification of organic compounds according to their
aromatic/antiaromatic character; which, in turn, is the start-
ing point for a quantitative treatment of aromaticity.

Computational Methods

A comprehensive set of 106 five-membered cyclic compounds (1-106,
Scheme 1 and Scheme 2) and five six-membered molecules (compounds
106-111, Scheme 3) was used to train and validate the network. Each
compound is represented by four independent descriptors that are widely
used to quantify aromaticity: aromatic stabilization energy (ASE), mag-
netic susceptibility exaltation (A) and NICS, computed at the ring center
and at 1 A above the molecular plane [NICS(1)]. The aromaticity in-
dexes for 1-105 were taken from a comprehensive study recently pub-
lished by Cyraiiski et al.*?! The calculations for the rest of the molecules
were performed with the Gaussian 98 program.**!

The geometries of compounds 106-111 were optimized and characterized
by harmonic vibrational frequency computation at the MP2/6-31G(d)
level of theory, which showed that all the structure were minima on the
potential energy surface. In concordance with the results reported by Cy-
rafski et al.,” the homodesmotic reaction indicated in Scheme 4a was
used to evaluate the ASE of the singlet cyclopentadienyl cation. This
equation is a strain-balanced homodesmotic approach since all reference
compounds are five-membered rings computed in their most stable con-
formation."™ To estimate the ASE of the six-membered systems, we em-
ployed the homodesmotic and strain-balanced equation indicated in
Scheme 4b, based on 1,3-cyclohexadiene, as proposed by Schleyer and
Piilhofer." This reaction can be adapted to obtain reliable ASEs for six-
membered heterocycles (Scheme 4c). The energies were corrected by the
MP2/6-31G(d) zero-point energies. Systems with strongly positive ASEs
are aromatic, while those with strongly negative values are antiaromatic.

The magnetic susceptibility exaltation (A) is defined as the difference be-
tween the magnetic susceptibility of a compound (x,) and a reference
one without cyclic electron delocalization (x,,) [Eq. (1)]."7 The exalta-
tions were obtained from the reactions indicated in Scheme 4. The mag-
netic susceptibilities were computed using the CSGT method*! at the
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Scheme 1. Five-membered heterocyclic compounds (1-75) used in the
training of the neural network.
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76, X = BeH” 85, X=AlI 94 X = GaHz- 102Y X = CH2 106
77,X=B 86, X=AH 95 X =GeH 103, X=0

78, X=BH 87, X=AlH, 96 X=GeH" 104 X=8

79, X=BH, 88 X=SiH 97, X=GeH, 105 X=Se

80, X=CH 89, X=SiH" 98 X=As

81,X=CH, 90, X=SiH, 99 X=AsH

82, X=CF, 91,X=P 100, X = AsH,"

83, X=N 92 X=PH," 101, X =Se

84, X = NH," 93, X = GaH

Scheme 2. Five-membered rings of the type C,H,X (76-105) and the cy-
clopentadienyl cation (106) used in the training and validation of the

neural network.
108 110 111

Scheme 3. Six-membered ring systems used to validate the neural net-
work.

HF/6-3114 G** level of theory. The exaltations are negative (diamag-
netic) for aromatic compounds and positive (paramagnetic) for antiaro-
matic compounds.

A= n—Aw 1

The nucleus independent chemical shift (NICS) is defined as the negative
value of the absolute magnetic shielding computed at the ring center or
another interesting point of the system.!'® NICS were calculated at the
ring critical point, the position of minimal charge density in the ring

Chem. Eur. J. 2007, 13, 3913-3923


www.chemeurj.org

Classification of Compounds According to Aromaticity Criteria

X2 X3 X2-x3 X2-x3 X2 X3
O e e —— %0 e D o
Y Y N Y
00— 00w
W —
X X X X
(Jr )OO J——(J(Jr =) @
o ~ - —
N N N N
Scheme 4. Homodesmotic and strain-balanced reactions used to evaluate the aromatic exaltation energies

(ASE) and magnetic susceptibility exaltations (1) of singlet cyclopentadienyl cation and five-membered het-
erocycles (a), six-membered carbocycles (b), and six-membered heterocyclic

compounds (c).

plane, as suggested by Cossio and co-workers,”! and 1 A above it. The
NICS(1) values computed 1 A above the molecular plane are considered
to better reflect the m-electron effects."®™ The GIAO/HF/6-311+4G**
method was used for the NICS calculations.*”! Rings with highly negative
values of NICS and NICS(1) are quantified as aromatic, whereas those
with positive values are antiaromatic.

Other useful aromaticity descriptor is the harmonic oscillator model of
aromaticity (HOMA) index, defined by Kruszewski and Krygowski

[Eq. (2)].27

a
HOMA =1-— % (R, —R/)’ )

Where n is the number of bonds taken into the summation, and a is an
empirical constant fixed to give HOMA =0 for a model non-aromatic
system and HOMA =1 for a system with all bonds equal to an optimal
value R,,, assumed to be realized for a fully aromatic system. R; is the
running bond length. Since this structure-based index can not be applied
to all systems due to a lack of parameters, it could not be used as descrip-
tor in the general classification. However, we have also employed
HOMA values to generate neural networks from a limited dataset (see
below).

Kohonen neural network (self-organizing maps, SOM): Once the aroma-
ticity descriptors have been obtained, we have generated a family of
input vectors that represent each compound of the training dataset.

A Kohonen self-organizing map (SOM) is an unsupervised neural net-
work that can be used to create a projection of objects from a higher di-
mensional space onto a lower dimensional space, usually two-dimension-
al, while preserving topological relations as faithfully as possible. The
basic purpose of a self-organizing map is to classify, to cluster, and to vis-
ualize multivariate data.

A SOM consists of two layers of neurons: input and output layers. The
input layer contains m neurons corresponding to m molecular descriptors.
The output layer is usually a two-dimensional geometrical arrangement
of n neurons. The m neurons of the input layer are all connected to each
of the n neurons of the output layer by weights vectors w; (Figure 1).

Each compound p in the training set is represented by a vector X, (x,;,
X5, X,,) and each neuron j in the output layer is characterized by a
weight vector W; (wj;, wp,, w;,), where m is the number of molecular
descriptors employed.

The training is an iterative process during which the weight vectors are
adjusted to become more similar to the training data. Initially, the weight
vectors are set to random values. Then, an input vector is presented to all
neurons of the network and is mapped into one neuron, the “winner”.
The selection of the matching neuron is usually made by comparison of
the Euclidean distance d; between the input vector X, and all the weight
vectors W; [Eq. (3)].

d; = Z (xﬁi_wll)z 3)

The neuron j having the shortest distance to the input vector X, is the
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winner. Then, the weights of the win-
ning node and the neighboring neu-
rons nodes are modified, according to
Equation 4.

W= Wi (1) - (omwi(0)  (4)
Where ¢ is the iteration number. h(t)
is the neighborhood kernel and it de-
termines which neurons are neighbors
and how such neighboring neurons
will be modified. The same procedure
is repeated for all objects. Thus, a

Output layer

S Y 8.4
N7 SN/

Input layer

Figure 1. Architecture of a Kohonen neural network.

mapping of the objects onto a two-dimensional space is obtained that re-
flects the topology, the arrangements of the objects in the m-dimensional
space.

The Kohonen networks were obtained with the SOM_PAK program.*”)
About 50 SOMs were trained by varying both the map size (number of
neurons) and training parameters. Two different topologies, namely rec-
tangular and hexagonal, were also tested and it was found that the hexag-
onal lattice was better for visual inspection. Although all trained net-
works gave similar results, a hexagonal lattice with 13x10 neurons was
selected based on the appearance of the clusters in the map. Bubble func-
tion was used as neighborhood kernel. Training was done in two phases:
an ordering phase with 2000 steps and a self-organizing phase with 20000
steps. During the first cycle, 2000 training steps were carried out and the
learning rate and initial neighborhood were set to 1 and 10, respectively.
The parameter values for the second cycle were 0.05 and 1, respective-
Ly

Results and Discussion

Classification of five-membered systems using SOMs: We
have applied SOMs for the classification of organic com-
pounds according to their aromatic character. The aim of
this research was to elaborate a pattern that contains the
most frequently used and readily obtained aromaticity indi-
cators and to use this as a basis for quantifying aromaticity.

Since aromaticity is a multidimensional property, a clas-
sification taking into account the main aromaticity criteria is
necessary. We have employed the most widely used indices
of aromaticity to represent each molecule: an energetic-
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based index (ASE) and three magnetic-based indices, A,
NICS, computed at the ring center, and NICS(1), calculated
1 A above the molecular plane. The most accepted and ef-
fective structure-based criteria of aromaticity, HOMA, can
not be used as descriptor in the general classification be-
cause it can not be estimated in systems containing N—S, P—
N, P—P, P—O, P-S, and C—metal bonds due to the lack of pa-
rameters. However, to check the influence of this structural
index in the resulting classification, two different SOMs
were performed with a dataset consisting of 56 compounds,
whose HOMASs are available. These results will be present-
ed later.

Scheme 1 and Scheme 2 show the molecular structures of
the 106 five-membered ring systems used in the training and
validation of the network. This comprehensive dataset, used
in previous aromaticity studies,” contains a wide range of
aromatic, non-aromatic, and antiaromatic compounds. The
values of the ASE, A, NICS, NICS(1), and HOMA for each
system are collected in Table 1. These descriptors are used
as a multidimensional input for the SOM which transforms
this data into a 2D map, preserving the essential topological
features of the data. The SOM automatically clusters the
similar compounds based on these descriptors.

Figure 2 shows the map obtained by training a self-organ-
izing network with the four aromaticity descriptors of the
first 100 compounds of the Table 1. The 2,3,4-tetraza deriva-
tives (37, 38, and 39) were excluded from the training set
since two parameters could not be computed. Systems 80,
81, and 106 were used to test the SOM obtained.

We have chosen a hexagonal network with 130 neurons
arranged in a 13x10 grid. According to Chen and Gasteig-
er,® the networks having between one and three times as
many neurons as compounds in the dataset perform very
well. Each small hexagon represents a neuron: the number
within a neuron is the number of the compound, as indicat-
ed in Scheme 1 and Scheme 2, mapped into it. Although
there are more neurons in the output layer than compounds
in the dataset, there are some compounds mapped into the
same node, emphasizing that the neural network has recog-
nized the close similarity of these compounds.

Clusters on the map are better detected by analyzing the
U-matrix, that is the matrix of distances between adjacent
units of the SOM obtained (Figure 3). The distances be-
tween the neighboring neurons are visualized by grey levels:
white areas represent nodes that are close to each other,
while black areas represent nodes that are far apart from
those around it. Therefore, clusters are white zones sur-
rounded by black boundaries. In this case, three large clus-
ters can be identified on the left-hand side, on the upper
right-hand side, and on the lower right-hand side. All the
compounds placed on the left cluster follow the four aroma-
ticity criteria: positive ASE values, negative A, and highly
negative values of NICS and NICS(1); that is aromatic com-
pounds. On the contrary, the systems placed on the lower
right side exhibit an energetic destabilization, an exalted
paramagnetic susceptibility and positive values of NICS and
NICS(1); that is antiaromatic compounds. The rings located
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on the upper right side show intermediate values for these
descriptors. Therefore, from these four descriptors, the net-
work clusters the extensive set of 100 five-membered sys-
tems into three large families: aromatic, non-aromatic, and
antiaromatic. Moreover, the SOM places compounds with
similar, but non-identical, aromatic character in neighboring
neurons, creating a smooth transition of different aromaticity
degrees over the whole map.

The visualization of the components of the SOM
(Figure 4) show clearly how the neurons (here representing
the compounds) are ordered progressively depending on
their weights. The correlations and relationships between
the different aromaticity indices and the spatial localization
of a compound are easily visualized by using the component
planes.

The quantitative character of the SOM obtained is better
illustrated in a Sammon map (Figure 5).°) Sammon map-
ping is an iterative method that generates a nonlinear pro-
jection from the n-dimensional input vectors to two-dimen-
sional points on a plane; the distances between the image
vectors tend to approximate to Euclidean distances of the
input vectors. It has been used to represent the SOM in a
proportional scale that allows visualizing the shape of the
clusters and the relative distance between them.

Figure 5 illustrates fairly well the quantitative character of
the classification obtained. The scale shows the degree of ar-
omaticity associated with each system depending on its posi-
tion on the map. The neuron activated by 1H-1,2,3-triazole
(15) represent the highest degree of aromaticity, whereas
the one activated by borole (78) represent the highest
degree of antiaromaticity. Aromaticity decreases gradually
from 1H-1,2,3-triazole (15) to borole (78). Consequently, de-
pending on the Euclidean distance to the neuron activated
by 15, the five-membered compounds can be divided into
different groups according to their aromatic character. The
values of the different aromaticity indices for each category
are collected in Table 2.

Besides the general features of the map indicated in
Figure 5, other interesting conclusions can be extracted from
the classification pattern of aromaticity, which are discussed
below.

All the compounds classified as aromatic have been total-
ly discriminated from the other two classes by the Kohonen
network. All these compounds are energetically stabilized,
exhibit diamagnetic susceptibility exaltations A and negative
values of NICS and NICS(1) (Table 2). Therefore, the clas-
sification obtained satisfies the definition proposed by Kry-
gowski and co-workers,**< that is, the fully aromatic systems
are those cyclic m-electronic systems that follow all the main
aromatic criteria.

Both the U-matrix map (Figure 3) and the Sammon map
(Figure 5) show a subcluster within the aromatic compounds,
formed by phospha derivatives of phosphole (compounds
75, 67, 71, 59, 55, 51, 43, and 63), the silacyclopentadienyl
anion (88), and the boracyclopentadienyl anion (77). Table 2
shows that these pyramidal five-membered heterocycles ex-
hibit highly negative values of the magnetic indices, in spite
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Table 1. Calculated ASE [kcalmol™'], A [ppmcgs], NICS and NICS(1) [ppm], and HOMA for the five-membered rings.

Compd  ASE A NICS NICS(1)  HOMAM Compd  ASE A NICS NICS(1) HOMAM
1 1477 290 1231 —-9.36 0.298 (0.778) 57 16.02 ~791 -13.07  —11.99
2 1857 -700 —13.80  —10.79 0.891 (0.900) 58 19.24 —6.41 -11.84  —10.85
3 2057 648 1486  —10.60 0.876 (0.895) 59 7.97 -9.75  —10.00  —10.28
4 320 —1.68 —-5.43 -5.97 0.236 (0.557) 60 12.18 -333 1241 -11.12
5 1729 271 -1236  -10.58 0.527 61 16.75 -9.64  —13.11 —-12.37
6 2018 713 1396  —11.66 62 19.47 —6.96  —14.45  —11.97
7 2370  -7.09  —1475  —11.93 0.926 63 4.11 —4.90 —6.88 —8.48
8 334 —1.54 —5.65 —6.84 64 11.84 -293  —1273 1137
9 1237 -1.83  —1131 —9.45 0332 65 1523 —1025  -1412  —1321
10 1743 —6.21 ~13.10  -11.37 0.905 66 18.38 —6.82  —1442 1235
1 1878 518 1385  -10.83 0.908 67 722 1147 1242  —11.75
12 3.01 -1.20 —-3.78 —6.25 0.276 68 12.72 -119  —11.02  -10.34
13 1720 157  —1297  —11.99 0.443 69 14.53 -877  —13.60  —1291
14 2048 775 1438 1372 70 17.96 —6.11 —1242  —11.63
15 2437  —667 1490  —1351 0.931 71 893 1238  —11.02  —11.88
16 256 —0.98 —4.13 —8.56 72 12.30 —245  —1337 1197
17 1423 133 1151 -10.40 0.553 73 1279  —1057  -1500  —14.38
18 1828  —631 1347  —11.96 74 17.12 -598  —1462  —12.98
19 2133 529 1366  —11.84 0.940 75 1124 -2082  -1722  —14.93
20 304  —1.08 —4.62 —-7.16 76 -7.78 10.19 9.13 4.04 (—0.166)
21 2019 158  —1272 —12.52 0.677 77 9.05  —1348  —12.65 —6.92 (0.420)
22 2267 760 1452 1296 78 2249 16.09 17.22 9.24 (—0.595)
23 266  —791 -14.83  —13.61 0.960 79 —0.24 —-0.20 0.12 —2.79 (0.281)
24 314 —1.34 —5.48 —7.64 82 1188 6.65 3.36 0.48
25 778  —059 1074  —10.00 0.243 83 19.56 -943  —1326  —11.03 0.844 (0.818)
26 1369 534  -13.00 —12.34 0.849 84 -2.05 1.58 —5.18 —5.27 —0.308 (0.135)
27 1496 350 -13.13  —11.52 0.823 85 —6.87 8.93 5.56 1.18 (0.058)
28 1.80  —0.88 —2.94 —6.97 0.025 86 —-9.98 13.05 6.35 3.06 (—0.261)
29 9.65 042  —12.94  —1229 0.413 87 —-2.07 3.78 2.84 —0.04 (0.007)
30 1472 —657 —1518  —14.65 88 9.30 -8.92 —9.09 ~7.90 (0.792)
31 1826 348  -1479 1412 0.897 89 2658 18.60 12.42 7.66 (—0.664)
32 1.51 —-1.27 —4.20 —8.69 90 —4.61 4.06 1.07 —1.41 (—0.035)
33 1871 -0.12  —13.84 1384 0.586 91 23.12 -9.78  —13.41 —-11.03 0.730 (0.859)
34 2162 785  -1549  —14.96 92 -8.31 4.17 —0.70 -2.56 0.047 (0.016)
35 2649 699 —1496  —14.64 0.960 93 -9.97 13.35 6.69 3.18 (—0.300)
36 224 —048 —4.92 -9.21 94 —-0.96 3.45 1.83 -0.52 (—0.059)
40 1319  —160  -11.38 —9.34 95 4.88 —-2.66 —4.29 —4.92 (0.626)
a1 1745 721 -13.51 —~11.40 9%  —23.92 18.48 11.33 6.90 (—0.628)
2 2031 -6.12  —13.55  -10.77 97 -2.97 3.74 0.35 -1.51 (0.037)
43 497  —491 -7.38 -7.73 98 2221 -1075  —12.88  —10.60 (0.877)
4 1350 -299  -1193  —10.26 0.326 99 171 —0.08 -3.93 —4.62 (0.447)
45 1701 -840  —13.04  —11.59 0.854 100 —6.55 4.12 -1.12 -2.30 (0.010)
46 1991 —6.85  —1426  —11.33 0.829 101 16.74 -743  —12.81 -10.01 (0.878)
47 303 274 —5.34 —6.90 0.378 102 -3.06 1.01 —0.72 —3.42 —0.142 (0.280)
48 1223 201 -11.94  —10.36 103 —14.65 9.05 9.63 2.81 —1.255 (—0.326)
49 1514 879  -13.89 1224 104 —11.96 10.48 12.60 3.46 —0.454 (0.031)
50 1917  —670  —14.03  —11.61 105 1144 12.44 13.49 3.79 —0.307 (0.092)
51 425 552 -8.92 -9.17 37 -16.16  —15.34 0.500
52 1214 —165  -11.08  —10.14 38 -1840  —17.48
53 1614 837  -1290 1216 39 -16.76  —16.59 0.950
54 1885  —616  —12.89  —11.39 80 2205  -1015  —13.99  -1025 0.736 (0.736)
55 6.18  —7.08 —~8.50 —9.34 81 0.00 0.00 —-3.18 —4.82 —0.780 (0.306)
56 1269  —111  —10.25 -9.28 106  —60.25 36.41 52.17 36.29 -1.050

[a] The structures of compounds 1-106 are indicated in Scheme 1 and Scheme 2. The data for 1-105 were taken from reference [42]. [b] Data for

HOMA based on three C—C bonds are given in parentheses.

of having a relatively small energetic stabilization. The size
of these molecules is greater than the other aromatic sys-
tems and it is well-known that the magnetic indices are
highly dependent on the ring size, especially the diamagnetic
susceptibility exaltation. Within this subcluster, the planar
1H-pentaphosphole (75) is classified as the most aromatic
phosphole derivative since it is furthest from both the non-
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aromatic and antiaromatic classes (see Figure 5). It is the
unique planar phosphole and it has been demonstrated that
the aromaticity in polyphospha systems increases on de-
creasing the pyramidalization of the phosphorus atom.F!!
The relative aromaticity of furan (1), thiophene (2), pyr-
role (3), and phosphole (4) has been discussed extensive-
1.2 The SOMs classify pyrrole as the most aromatic
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Figure 2. Kohonen map trained for the classification of five-membered systems. The numbers into the neurons

corresponds to the compounds shown in Scheme 1 and Scheme 2.

Figure 3. U-matrix map of the SOM trained with the aromaticity descriptors. The distances between the neigh-
bouring neurons are visualized by grey levels. Darker hexagons indicate a larger distance.

compound in the series, followed by thiophene, furan and,
finally, phosphole. Interestingly, the diamagnetic susceptibili-
ty exaltation A and NICS(1) give an inconsistent order. The
phosphole is placed in the group of the non-aromatic com-
pounds, clearly separated from the fully aromatic systems.
This result does not agree with the previous conclusion that
“phosphole along with cyclopentadiene are borderline aro-
matics”."

The aromaticity order pyrrole >thiophene > furan >
phosphole is maintained in the rest of their polyaza and pol-
yphospha derivatives. Moreover, it is well known that aro-
maticity increases when the difference in electronegativity
between a heteroatom and its neighboring atoms diminish-
es.® Accordingly, the most aromatic five-membered sys-
tems in the training dataset are 1H-1,2,3-triazole (15) and
2H-1,2 3 4-tetrazole (35), since the replacement of a CH by
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a nitrogen atom at position 2
causes a substantial increase of
aromaticity relative to pyrrole.

Validation and predictive power
of the neural network: The
trained Kohonen network can
be used to classify new com-
pounds according to their aro-
matic character as well as to
predict their degree of aroma-
ticity. To test the applicability
of the method, eight com-
pounds with a variety of struc-
tural features were selected:
three five-membered rings (the
highly aromatic cyclopentadien-
yl anion (80), the highly antiar-
omatic singlet cyclopentadienyl
cation (106), and the cyclopen-
tadiene (81)) and five six-mem-
bered rings (Scheme 3). These
compounds were not used for
the training of the neural net-
work but only to validate it.
Figure 6 shows the trained
SOM with the neurons color
coded. A quantitative assess-
ment of the degree of aromatic-
ity is given by the color scale in
Figure 6. White neurons repre-
sent the cluster boundaries de-
termined by the U-matrix map
as discussed above.

The cyclopentadienyl anion
(80) is correctly classified to-
gether with compound 98 in the
region of the highly aromatic
compounds. On the other hand,
the singlet cyclopentadienyl
cation (106), the most antiaro-
matic five-membered ring system, according the four de-
scriptors, is mapped into the neuron which represents the
highest degree of antiaromaticity. Finally, we have chosen
the controversial cyclopentadiene (81), because its possible
aromaticity, through the 2m hyperconjugative contribution
of the CH,, has been long discussed.l'***>> According to
the classification pattern of the SOM, cyclopentadiene is a
non-aromatic conjugated diene in conformity with a very
recent analysis.”>>* Therefore, the neural network is able to
discriminate 81 from the fully aromatic systems; although
cyclopentadiene exhibits a small diamagnetic ring current
but not a significant energetic stabilization,™ it is not aro-
matic. This result agrees with the conclusion that the “ring
current is necessary but certainly not a sufficient condition

for aromaticity”.”®

Chem. Eur. J. 2007, 13,3913 -3923
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Figure 4. Component visualization of the SOM: a) ASE, b) 4, c¢) NICS, and d) NICS(1). The values of each

descriptor are represented by grey levels.
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Figure 5. Sammon map obtained for the training dataset. The numbers
refer to the compounds indicated in Scheme 1 and Scheme 2. The dis-
tance between the neurons corresponds approximately to Euclidean dis-
tances of the input pattern (aromaticity criteria). The colored scale corre-
sponds to aromatic/antiaromatic features (Table 2), and the axis scales
are in arbitrary units.
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An advantage of SOMs is
that even compounds lacking
some of the descriptors (that is,
having incomplete input vec-
tors) can be classified. This is
the case of the 1,2,3,4,5-oxate-
trazole (37), 1,2,3,4,5-thiatetra-
zole (38), and 1H-1,2,3,4,5-pen-
tazole (39), whose ASE and A
could not be evaluated by
Equation (1) since that a refer-
ence compound (2,3,4,5-tetraza-
cyclopentadiene) could not be
optimized.'” With only NICS
and NICS(1) as descriptors,
these systems are placed in the
same neuron as 1H-penta-
phosphole (75), that is weakly
aromatic. In this case, the Ko-
honen network looks for the
highest similarity with regard to
the available descriptors.

We have also tested the abili-
ty of the SOM to classify and
quantify the aromaticity of six-membered cyclic compounds.
The aromaticity indices have a series of disadvantages when
comparing rings of different size. Thus, magnetic susceptibil-
ity exaltation depends heavily on the ring size and, on the
other hand, ASE is strongly dependent on the reaction
scheme employed for its evaluation, which is different for
five-membered and six-membered rings. Despite these in-
conveniences, we have evaluated five six-membered ring
compounds (Scheme 3), namely benzene (107), pyridine
(108), pyrazine (109), cyclohexadiene (110) and cyclohexene
(111). Table 3 collects the values of the descriptors of these
molecules, and Figure 6 depicts their placements on the
map. Benzene, the model aromatic compound, together with
pyridine and pyrazine, are properly mapped into the neuron
that represents the highest aromaticity. Cyclohexene and cy-
clohexadiene are well classified as non-aromatic compounds.
A close inspection to the descriptors of 107, 108, and 109
shows that benzene is clearly more aromatic than pyrazine.
However, they are mapped into the same neuron. The prob-
lem is that the values of the ASE of 107 and 108 are out of
the range of the ASE values employed during the training
of the network. Accordingly, any compound whose descrip-
tors indicate a higher aromaticity than 15 and 35 will be
mapped onto the same neuron since this node represents
the highest aromaticity. Although the SOM is able to classi-
fy six-membered rings according to their aromatic character,
it would be advisable to generate another classification for
six-membered rings. A potential solution to this issue would
be to make a larger map and employ six-membered cyclic
compounds during the network training. Nevertheless, as
the number of neurons increases, the similarity perception
capability of the SOM decreases. The number of neurons
chosen (130) is a good compromise for making use of both

NICS(1)
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Category d ASE A NICS NICS(1)
aromatic 0.03.2 26.5+20.5 -10.8-~-5.3 —15.5--129 -15.0--10.6
4183 - 20.3<15.1 —9.6~-0.1 —14.8~-11.8 —-14.1--10.0
8.814.5 17.3-11.8 —10.6-0.4 —152+-10.3 —14.7--9.3
16.0-21.4 11241 —20.8—-4.9 —17.2—6.9 —14.9--6.9
non-aromatic 23.9-30.0 4.9--2.1 —2.7-1.6 —5.7<0.1 —-92--28
31.6-354 —1.0-—-4.6 1.0-4.1 —0.7<2.8 —3.4<0.0
antiaromatic 36.8+38.2 —6.6~—8.3 4142 —0.7--1.1 —2.3--2.6
40.1-49.1 —6.9--14.7 6.7—13.1 3.4<13.5 0.5-4.0
54.9-61.7 —22.5--26.6 16.1-18.6 11.3<17.2 6.9-9.2

[a] The compounds in the Sammon map are coloured according to this scale. [b] d; is the Euclidean distance between the weight vectors of each neuron

and the neuron activated by 1H-1,2,3-triazole (15).

AROMATIC

37.0

61.7 l ANTIAROMATIC

tors including the structural
index, whereas in the second
one we have used only energet-
ic and magnetic indices to rep-
resent each compound. The cor-
responding Sammon maps are
shown in Figure 7. The distribu-
tion of the compounds hardly
changes on adding the structur-
al descriptor. In fact, the com-
ponent planes for ASE and
HOMA show that these varia-
bles behave in a similar way
(Figure 8).

Conclusions

Figure 6. Self-organizing map obtained for the classification of 106 five-membered systems (1-106) and five
six-membered rings (107-111). Black circles represent the compounds used in the validation of the network.

The scale indicates the Euclidean distance between the weight vectors of each neuron and the neuron activat-
ed by compounds 15 and 35 (the most aromatic compounds in the training dataset). White neurons represent

the cluster boundaries.

Table 3. Calculated ASE [kcalmol '], A [ppmcgs], NICS and NICS(1)
[ppm], and HOMA for the six-membered cyclic compounds 107-111.

We have reported herein a
methodology that classifies or-
ganic compounds according to
their aromatic character. The
approach developed is based on
a Kohonen network and a set of indices of aromaticity that
represent the molecules. Since the different physical proper-
ties described by the corresponding aromaticity criteria will,

Compound ASE A NICS NICS(1) . o

in general, not lead to the same classification of compounds,
107 35.84 —15.36 —9.55 —11.26 it taki t of th t widel ted
108 3323 1297 _310 —11.09 a pattern taking account of the most widely accepted aroma-
109 25.80 ~11.06 623 _11.15 ticity parameters is necessary. We have demonstrated that
110 2.15 0.76 1.45 -1.26 the SOM is able to cluster an extensive dataset of five-mem-
111 0.00 0.00 -0.77 —1.85

similarity perception and interpolation capabilities of the
Kohonen neural network. Furthermore, we have not at-
tempted to train the network with six-membered rings due
to the absence of an extensive dataset with enough quality
and homogeneity.

Finally, we have analyzed the influence of the structure-
based index HOMA in the resultant classification. Two dif-
ferent SOM analyses were performed with a dataset of 56
compounds from which this index is available (see Table 1).
In the first SOM, each system is represented by five descrip-
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bered systems into three classes (aromatic, non-aromatic,
and antiaromatic), based on the values of the ASE, diamag-
netic exaltation 4, NICS, and NICS(1) of each compound.
Furthermore, the weight distances of the SOM (as shown in
Sammon maps) allow us to quantify the degree of aromatici-
ty associated to each molecule. The relationships between
the different compounds are straightforwardly visualized on
a two-dimensional map. As pointed out by Gasteiger and
Chen in a different application of SOMs,*) a two-dimen-
sional classification can reflect much better the results of
the different influences on the property (aromaticity in this
case) of a compound. Different directions in such a map
represent different types of similarity between the com-

Chem. Eur. J. 2007, 13, 3913-3923
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Figure 7. Sammon map obtained for the training dataset consisted of 56
compounds using: a) five descriptors including HOMA and b) four de-
scriptors.
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Figure 8. Component visualization of the SOM: a) ASE and b) HOMA.
The values of each descriptor are represented by grey levels.

pounds and different distances indicate different degrees of
similarity.

The most powerful advantages of the present method are
that it allows one visually to classify organic compounds ac-

Chem. Eur. J. 2007, 13, 3913-3923

© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

FULL PAPER

cording their aromatic character and, even, to estimate
quantitatively this property; additionally, it has predictive
power. Since the computer program is easy to use, very
fast,’” and readily extrapolated to other aromatic topologies
(different sized rings, fused rings, etc.), the methodology re-
ported herein can be an important contribution to the long
debate on the quantitative treatment of aromaticity.
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